Abstract

ABSTRACT Short-term travel time prediction on freeways is the most valuable information for drivers when selecting their routes and departure times. Furthermore, this information is also essential at traffic management centers in order to monitor the network performance and anticipate the activation of traffic management strategies. The importance of reliable short-term travel time predictions will even increase with the advent of autonomous vehicles, when vehicle routing will strongly rely on this information. In this context, it is important to develop a real-time method to accurately predict travel times. The present paper uses vehicle accumulation, obtained from input-output diagrams constructed from loop detector data, to predict travel times on freeway sections. Loop detector count drift, which typically invalidates vehicle accumulation measurements, is corrected by means of a data fusion algorithm using GPS measurements. The goodness of the methodology has been proven under different boundary conditions using simulated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.