Abstract

ABSTRACT Activity schedule results from a complex decision-making process characterized by several interrelated decisions. Different facets of an activity schedule such as activity type, timing, duration, etc. influence each other and this makes modeling activity schedules a complex task. This complexity has compelled researchers to explore different approaches for modeling activity schedules, among which two predominant approaches can be identified: the utility-maximization theory based econometric approach and the computational process modeling approach. Despite their advantages and a few successful practical applications, challenges still remain leaving avenues for exploration of new approaches. This paper contributes in this direction by reviewing the relationship between language, grammar, and machines in the context of sequence analysis for activity sequence generation. Following that, the paper presents a stochastic Finite State Machine that can generate activity sequences to match the frequency distribution of sequences from a given data set. Our results show that the proposed algorithm can not only generate activity sequences with a distribution similar to that of original data but can also efficiently generate new patterns not in the original data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.