Abstract

The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability.

Highlights

  • As people navigate they acquire knowledge about their environment, including the spatial layout of salient landmarks, based upon visual, proprioceptive and kinaesthetic inputs

  • The present study examined the relative contributions of distinct working memory subsystems on object-location memory during a landmark-based spatial navigation task

  • We divided participants into ‘good’ and ‘poor’ navigators, based on performance in the control trials, because we predicted that the degree to which people rely on spatial, verbal or visual working memory might depend on an individual’s general navigational ability

Read more

Summary

Introduction

As people navigate they acquire knowledge about their environment, including the spatial layout of salient landmarks, based upon visual, proprioceptive and kinaesthetic inputs. This information is encoded and stored in memory, allowing us to find our way back to a desired location within the same environment. A second key question is whether people adopt distinctive strategies during the encoding of novel environments, which might lead to notable individual differences in navigational ability [2,4]. The overarching aims of the current study were to determine the contributions of distinct working memory subsystems to the maintenance of landmark locations within a novel environment, and to examine whether good and poor navigators differ with respect to their reliance on these specific working memory processes

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.