Abstract
This study examines the short‐term (∼15 year) effects of controlling fossil‐fuel soot (FS) (black carbon (BC), primary organic matter (POM), and S(IV) (H2SO4(aq), HSO4−, and SO42−)), solid‐biofuel soot and gases (BSG) (BC, POM, S(IV), K+, Na+, Ca2+, Mg2+, NH4+, NO3−, Cl− and several dozen gases, including CO2 and CH4), and methane on global and Arctic temperatures, cloudiness, precipitation, and atmospheric composition. Climate response simulations were run with GATOR‐GCMOM, accounting for both microphysical (indirect) and radiative effects of aerosols on clouds and precipitation. The model treated discrete size‐resolved aging and internal mixing of aerosol soot, discrete size‐resolved evolution of clouds/precipitation from externally and internally mixed aerosol particles, and soot absorption in aerosols, clouds/precipitation, and snow/sea ice. Eliminating FS, FS+BSG (FSBSG), and CH4 in isolation were found to reduce global surface air temperatures by a statistically significant 0.3–0.5 K, 0.4–0.7 K, and 0.2–0.4 K, respectively, averaged over 15 years. As net global warming (0.7–0.8 K) is due mostly to gross pollutant warming from fossil‐fuel greenhouse gases (2–2.4 K), and FSBSG (0.4–0.7 K) offset by cooling due to non‐FSBSG aerosol particles (−1.7 to −2.3 K), removing FS and FSBSG may reduce 13–16% and 17–23%, respectively, of gross warming to date. Reducing FS, FSBSG, and CH4 in isolation may reduce warming above the Arctic Circle by up to ∼1.2 K, ∼1.7 K, and ∼0.9 K, respectively. Both FS and BSG contribute to warming, but FS is a stronger contributor per unit mass emission. However, BSG may cause 8 times more mortality than FS. The global e‐folding lifetime of emitted BC (from all fossil sources) against internal mixing by coagulation was ∼3 h, similar to data, and that of all BC against dry plus wet removal was ∼4.7 days. About 90% of emitted FS BC mass was lost to internal mixing by coagulation, ∼7% to wet removal, ∼3% to dry removal, and a residual remaining airborne. Of all emitted plus internally mixed BC, ∼92% was wet removed and ∼8% dry removed, with a residual remaining airborne. The 20 and 100 year surface temperature response per unit continuous emissions (STRE) (similar to global warming potentials (GWPs)) of BC in FS were 4500–7200 and 2900–4600, respectively; those of BC in BSG were 2100–4000 and 1060–2020, respectively; and those of CH4 were 52–92 and 29–63, respectively. Thus, FSBSG may be the second leading cause of warming after CO2. Controlling FS and BSG may be a faster method of reducing Arctic ice loss and global warming than other options, including controlling CH4 or CO2, although all controls are needed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have