Abstract

Sequencing batch reactor (SBR) for enhanced biological phosphorus removal (EBPR) processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in start-up stage. During the 34 days operation, SBR was set with temperature variation(0–5 d, 22±1°C; 6–13 d, 29±1°C; 14–34 d, 14±1°C). PAOs and GAOs were analyzed by fluorescent in situ hybridization (FISH), and intracellular polyphosphate granules were stained by Neisser-stain. The results showed that the influence of temperature shock on PAOs’ abundance was more serious than that on GAOs in the enriching process. Under sudden and substantially temperature variation, from 22±1°C to 29±1°C and then to 14±1°C, the domination of PAOs was deteriorated. After temperature shock, PAOs’ competitive advantages at low temperature that concluded in other study did not appear in our study. As mesophilic, GAOs (indicated by Alphaproteobacteria and Gammaproteobacteria) were more temperature adaptive and better grew and took the domination at 14±1°C in the end. In the competition process, organisms of tetrad forming organisms (TFOs)-like shape which were considered as typical GAOs, were observed. With the evidence of poly-P granules containing by Neisser-straining and result of FISH, these organisms of TFOs-like shape were better to be assumed as adaption state or a special self-protecting shape of PAOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call