Abstract
We investigate in detail the effect of making the range of the {open_quotes}contact{close_quotes} interaction used in effective field theory (EFT) calculations of NN scattering finite. This is done in both an effective field theory with explicit pions, and one where the pions have been integrated out. In both cases we calculate NN scattering in the {sup 1}S{sub 0} channel using potentials which are second order in the EFT expansion. The contact interactions present in the EFT Lagrangian are made finite by use of a square-well regulator. We find that there is an optimal radius for this regulator, at which second-order corrections to the EFT are identically zero; for radii near optimal these second-order corrections are small. The cutoff EFT{close_quote}s which result from this procedure appear to be valid for momenta up to about 100{endash}150MeV/c. We also find that the radius of the square well cannot be reduced to zero if the theory is to reproduce both the experimental scattering length and effective range. Indeed, we show that, if the NN potential is the sum of a one-pion-exchange piece and a short-range interaction, then the short-range piece must extend out beyond 1.05 fm, regardless of its particular form. {copyright} {ital 1997}more » {ital The American Physical Society}« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.