Abstract

We use an effective field theory (EFT) approach to calculate the next to leading order (NLO) gravitational spin-orbit interaction between two spinning compact objects. The NLO spin-orbit interaction provides the most computationally complex sector of the NLO spin effects, previously derived within the EFT approach. In particular, it requires the inclusion of non-stationary cubic self-gravitational interaction, as well as the implementation of a spin supplementary condition (SSC) at higher orders. The EFT calculation is carried out in terms of the non-relativistic gravitational field parametrization, making the calculation more efficient with no need to rely on automated computations, and illustrating the coupling hierarchy of the different gravitational field components to the spin and mass sources. Finally, we show explicitly how to relate the EFT derived spin results to the canonical results obtained with the ADM Hamiltonian formalism. This is done using non-canonical transformations, required due to the implementation of covariant SSC, as well as canonical transformations at the level of the Hamiltonian, with no need to resort to the equations of motion or the Dirac brackets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call