Abstract

A highly coveted goal is to realize emergent non-Abelian gauge theories and their anyonic excitations, which encode decoherence-free quantum information. While measurements in quantum devices provide new hope for scalably preparing such long-range entangled states, existing protocols using the experimentally established ingredients of a finite-depth circuit and a single round of measurement produce only Abelian states. Surprisingly, we show there exists a broad family of non-Abelian states-namely those with a Lagrangian subgroup-which can be created using these same minimal ingredients, bypassing the need for new resources such as feed forward. To illustrate that this provides realistic protocols, we show how D_{4} non-Abelian topological order can be realized, e.g., on Google's quantum processors using a depth-11 circuit and a single layer of measurements. Our work opens the way toward the realization and manipulation of non-Abelian topological orders, and highlights counterintuitive features of the complexity of non-Abelian phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.