Abstract
Implicit representation of graphs is a coding of the structure of graphs using distinct labels so that adjacency between any two vertices can be decided by inspecting their labels alone. All previous implicit representations of planar graphs were based on the classical three forests decomposition technique (a.k.a. Schnyder's trees), yielding asymptotically to a 3 log n-bit label representation where n is the number of vertices of the graph. We propose a new implicit representation of planar graphs using asymptotically 2 log n-bit labels. As a byproduct we have an explicit construction of a graph with n2+o(1) vertices containing all n-vertex planar graphs as induced subgraph, the best previous size of such induced-universal graph was O(n3). More generally, for graphs excluding a fixed minor, we construct a 2 log n + O(log log n) implicit representation. For treewidth-k graphs we give a log n + O(k log log(n/k)) implicit representation, improving the O(k log n) representation of Kannan, Naor and Rudich [18] (STOC '88). Our representations for planar and treewidth-k graphs are easy to implement, all the labels can be constructed in O(n log n) time, and support constant time adjacency testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.