Abstract
AbstractWe present a linear time algorithm for computing an implicit linear space representation of a minimum cycle basis (MCB) in weighted partial 2-trees, i.e., graphs of treewidth two. The implicit representation can be made explicit in a running time that is proportional to the size of the MCB.For planar graphs, Borradaile, Sankowski, and Wulff-Nilsen [Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time, FOCS 2010] showed how to compute an implicit O(n logn) space representation of an MCB in O(n log5 n) time. For the special case of partial 2-trees, our algorithm improves this result to linear time and space. Such an improvement was achieved previously only for outerplanar graphs [Liu and Lu: Minimum Cycle Bases of Weighted Outerplanar Graphs, IPL 110:970–974, 2010].KeywordsShort PathPlanar GraphLinear TimeImplicit RepresentationTree DecompositionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.