Abstract

A Hamiltonian circle action on a compact symplectic manifold is known to be a closed geodesic with respect to the Hofer metric on the group of Hamiltonian diffeomorphisms. If the momentum map attains its minimum or maximum at an isolated fixed point with isotropy weights not all equal to plus or minus one, then this closed geodesic can be deformed into a loop of shorter Hofer length. In this paper we give a lower bound for the possible amount of shortening, and we give a lower bound for the index (“number of independent shortening directions”). If the minimum or maximum is attained along a submanifold B, then we deform the circle action into a loop of shorter Hofer length whenever the isotropy weights have sufficiently large absolute values and the normal bundle of B is sufficiently un-twisted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.