Abstract
We implement variational shortcuts to adiabaticity for optical pulse compression in an active nonlinear Kerr medium with distributed amplification and spatially varying dispersion and nonlinearity. Starting with the hyperbolic secant ansatz, we employ a variational approximation to systematically derive dynamical equations, establishing analytical relationships linking the amplitude, width, and chirp of the pulse. Through the inverse engineering approach, we manipulate the distributed gain/loss, nonlinearity and dispersion profiles to efficiently compress the optical pulse over a reduced distance with high fidelity. In addition, we explore the dynamical stability of the system to illustrate the advantage of our protocol over conventional adiabatic approaches. Finally, we analyze the impact of tailored higher-order dispersion on soliton self-compression and derive physical constraints on the final soliton width for the complementary case of soliton expansion. The broader implications of our findings extend beyond optical systems, encompassing areas such as cold-atom and magnetic systems highlighting the versatility and relevance of our approach in various physical contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.