Abstract

A shortcut method is proposed for the design of columns separating homogeneous azeotropic mixtures. Azeotropes are treated as pseudocomponents, and a C-component system with A azeotropes is treated as an enlarged (C + A)-component system. This enlarged system is divided into compartments, where each compartment behaves like a nonazeotropic distillation region formed by the singular points that appear in it. The compartment boundary is linearly approximated. A procedure is proposed for transforming vapor−liquid equilibrium behavior in terms of pure components into that in terms of singular points, allowing relative volatilities to be characterized in terms of singular points. The classical Fenske−Underwood−Gilliland method can then be used to design columns separating azeotropic mixtures. This method is extremely computationally efficient and can be applied to homogeneous azeotropic mixtures with any number of components. The results of the shortcut design method are useful for initializing rigorous simulations using commercial software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.