Abstract

Short-chain chlorinated paraffins (SCCPs) are frequently detected in environmental matrices and human tissues. It was hypothesized that SCCPs might interact with the peroxisome proliferator-activated receptor α (PPARα). In the present study, an in vitro, dual-luciferase reporter gene assay and in silico molecular docking analysis were employed together to study the interactions between SCCPs congeners and PPARα. Expressions of genes downstream in pathways activated by PPARα in liver of rats exposed to 1, 10, or 100 mg/kg bm/d of C10−13-CPs (56.5% Cl) for 28 days were examined to confirm activation potencies of SCCPs toward PPARα signaling. Effects of exposure to C10−13-CPs (56.5% Cl) on fatty acid metabolism in rat liver were also explored via a pseudo-targeted metabolomics strategy. Our results showed that C10−13-CPs (56.5% Cl) caused a dose-dependent greater expression of luciferase activity of rat PPARα. Molecular docking modeling revealed that SCCPs had a strong capacity to bind with PPARα only through hydrophobic interactions and the binding affinity was dependent on the degree of chlorination in SCCPs congeners. In livers of male rats, exposure to 100 mg/kg bm/d of C10−13-CPs (56.5% Cl) resulted in up-regulated expressions of 11 genes that are downstream in the PPARα-activated pathway and regulate catabolism of fatty acid. Consistently, accelerated fatty acid oxidation was observed mainly characterized by lesser concentrations of ∑fatty acids in livers of rats. Overall, these results demonstrated, for the first time, that SCCPs could activate rat PPARα signaling and thereby disrupt metabolism of fatty acid in livers of male rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.