Abstract
A composite-medium line-source model has been recently developed for modeling short-time thermal processes of borehole ground heat exchangers. The composite-medium line-source model is attractive for applications where the short-term or high-frequency responses of borehole ground heat exchangers are important. In this paper, the short-time performance of this analytical model is examined in depth by comparing it with a two-dimensional finite volume model. The numerical model can address the heat capacity of circulating water by using a novel time-varying boundary condition on the inner walls of the U-shaped tube, in addition to the heat capacities of U-shaped tube and grouting material. Both the numerical and the analytical composite-medium models are validated using an independent sandbox experiment. Comparisons between the two models are also made for different parameters, including heating rate, the spacing of the U-tube legs, thermal properties, and borehole radius. Overall, the composite-medium line-source model gives the virtually same results as the numerical model except for the first several minutes: the analytical solution overestimates temperature responses during the first 3 min, which is caused by the line-source assumption ignoring the heat capacities of the fluid and the U-shaped pipe.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have