Abstract
Analytical theory and Stokesian dynamics simulations are used in conjunction with dynamic light scattering to investigate the role of hydrodynamic interactions in short-time diffusion in suspensions of charge-stabilized colloidal particles. The particles are modeled as solvent-impermeable charged spheres, repelling each otherviaa screened Coulomb potential. Numerical results for self-diffusion and sedimentation coefficients, as well as hydrodynamic and short-time diffusion functions, are compared with experimental data for a wide range of volume fractions. The theoretical predictions for the generic behavior of short-time properties obtained from this model are shown to be in full accord with experimental data. In addition, the effects of microion kinetics, nonzero particle porosity and residual attractive forces on the form of the hydrodynamic function are estimated. This serves to rule out possible causes for the strikingly small hydrodynamic function values determined in certain synchrotron radiation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.