Abstract

The intermittent nature of distributed energy resources introduces new degrees of uncertainty in the operation of energy systems; hence, short-term decisions can no longer be considered fully deterministic. In this article, an energy management system (EMS) was proposed to optimize the market participation and the real-time operation of a virtual power plant (VPP) composed of photovoltaic generators, non-flexible loads, and storage systems (e-vehicle, stationary battery, and thermal storage). The market bidding process was optimized through a two-stage stochastic formulation, which considered the day-ahead forecast uncertainty to minimize the energy cost and make available reserve margins in the ancillary service market. The real-time management of regulating resources was obtained through an innovative rolling horizon stochastic programming model, taking into account the effects of short-term uncertainties. Numerical simulations were carried out to demonstrate the effectiveness of the proposed EMS. The architecture proved to be effective in managing several distributed resources, enabling the provision of ancillary services to the power system. In particular, the model developed allowed an increase in the VPP’s profits of up to 11% and a reduction in the energy imbalance of 25.1% compared to a deterministic optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call