Abstract

In recent years, the penetration of photovoltaic (PV) generation in the energy mix of several countries has significantly increased thanks to policies favoring development of renewables and also to the significant cost reduction of this specific technology. The PV power production process is characterized by significant variability, as it depends on meteorological conditions, which brings new challenges to power system operators. To address these challenges, it is important to be able to observe and anticipate production levels. Accurate forecasting of the power output of PV plants is recognized today as a prerequisite for large-scale PV penetration on the grid. In this paper, we propose a statistical method to address the problem of stationarity of PV production data, and develop a model to forecast PV plant power output in the very short term (0–6 h). The proposed model uses distributed power plants as sensors and exploits their spatio-temporal dependencies to improve forecasts. The computational requirements of the method are low, making it appropriate for large-scale application and easy to use when online updating of the production data is possible. The improvement of the normalized root mean square error (nRMSE) can reach 20% or more in comparison with state-of-the-art forecasting techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.