Abstract

With the popularization of solar energy development and utilization, photovoltaic power generation is widely used in countries around the world and is increasingly becoming an important part of new energy generation. However, it cannot be ignored that changes in solar radiation and meteorological conditions can cause volatility and intermittency in power generation, which, in turn, affects the stability and security of the power grid. Therefore, many studies aim to solve this problem by constructing accurate power prediction models for PV plants. However, most studies focus on adjusting the photovoltaic power station prediction model structure and parameters to achieve a high prediction accuracy. Few studies have examined how the various parameters affect the output of photovoltaic power plants, as well as how significantly and effectively these elements influence the forecast accuracy. In this study, we evaluate the correlations between solar irradiance intensity (GHI), atmospheric density (ρ), cloudiness (CC), wind speed (WS), relative humidity (RH), and ambient temperature (T) and a photovoltaic power station using a Pearson correlation analysis and remove the factors that have little correlation. The direct and indirect effects of the five factors other than wind speed (CC) on the photovoltaic power station are then estimated based on structural equation modeling; the indirect effects are generated by the interaction between the variables and ultimately have an impact on the power of the photovoltaic power station. Particle swarm optimization-based support vector regression (PSO-SVR) and variable weights utilizing the Mahalanobis distance were used to estimate the power of the photovoltaic power station over a short period of time, based on the contribution of the various solar radiation and climatic elements. Experiments were conducted on the basis of the measured data from a distributed photovoltaic power station in Changzhou, Jiangsu province, China. The results demonstrate that the short-term power of a photovoltaic power station is significantly influenced by the global horizontal irradiance (GHI), ambient temperature (T), and atmospheric density (ρ). Furthermore, the results also demonstrate how calculating the relative importance of the various contributing factors can help to improve the accuracy when estimating how powerful a photovoltaic power station will be. The multiple weighted regression model described in this study is demonstrated to be superior to the standard multiple regression model (PSO-SVR). The multiple weighted regression model resulted in a 7.2% increase in R2, a 10.7% decrease in the sum of squared error (SSE), a 2.2% decrease in the root mean square error (RMSE), and a 2.06% decrease in the continuous ranked probability score (CRPS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call