Abstract

AbstractA continuous-update-cycle storm-scale ensemble data assimilation (DA) and prediction system using the ARW model and DART software is used to generate retrospective 0–6-h ensemble forecasts of the 31 May 2013 tornado and flash flood event over central Oklahoma, with a focus on the prediction of heavy rainfall. Results indicate that the model-predicted probabilities of strong low-level mesocyclones correspond well with the locations of observed mesocyclones and with the observed damage track. The ensemble-mean quantitative precipitation forecast (QPF) from the radar DA experiments match NCEP’s stage IV analyses reasonably well in terms of location and amount of rainfall, particularly during the 0–3-h forecast period. In contrast, significant displacement errors and lower rainfall totals are evident in a control experiment that withholds radar data during the DA. The ensemble-derived probabilistic QPF (PQPF) from the radar DA experiment is more skillful than the PQPF from the no_radar experiment, based on visual inspection and probabilistic verification metrics. A novel object-based storm-tracking algorithm provides additional insight, suggesting that explicit assimilation and 1–2-h prediction of the dominant supercell is remarkably skillful in the radar experiment. The skill in both experiments is substantially higher during the 0–3-h forecast period than in the 3–6-h period. Furthermore, the difference in skill between the two forecasts decreases sharply during the latter period, indicating that the impact of radar DA is greatest during early forecast hours. Overall, the results demonstrate the potential for a frequently updated, high-resolution ensemble system to extend probabilistic low-level mesocyclone and flash flood forecast lead times and improve accuracy of convective precipitation nowcasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call