Abstract

The ensemble mean quantitative precipitation forecasts (QPFs) and probabilistic QPFs (PQPFs) from six operational global ensemble prediction systems (EPSs) in The Observing System Research and Predictability Experiment Interactive Grand Global Ensemble (TIGGE) data set are evaluated against the Tropical Rainfall Measuring Mission observations using a series of area-weighted verification metrics during June to August 2008–2012 in the Northern Hemisphere (NH) midlatitude and tropics. Results indicate that generally the European Centre for Medium-Range Weather Forecasts performs best while the Canadian Meteorological Centre (CMC) is relatively good for short-range QPFs and PQPFs at light precipitation thresholds. The overall forecast skill is better in the NH midlatitude than in the NH tropics. QPFs and PQPFs from China Meteorological Administration (CMA) have very little discrimination ability of different observed rain events in the NH tropics. The day +1 QPFs from Japan Meteorological Agency have remarkably large moist biases in the NH tropics, which leads to the discontinuity of forecast performance with the lead times. Performance changes due to the major EPS upgrades during the five summers are also examined using the forecasts from CMA as the reference to eliminate the interannual variation. After the EPS upgrade, CMC improves the PQPF skill at light precipitation threshold while its excessively enlarged ensemble spread increases the overall QPF and PQPF errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call