Abstract
Recently, solar energy has been gaining attention as one of the best promising renewable energy sources. Accurate PV power prediction models can solve the impact on the power system due to the non-linearity and randomness of PV power generation and play a crucial role in the operation and scheduling of power plants. This paper proposes a novel machine learning network framework to predict short-term PV power in a time-series manner. The combination of nonlinear auto-regressive neural networks with exogenous input (NARX), long short term memory (LSTM) neural network, and light gradient boosting machine (LightGBM) prediction model (NARX-LSTM-LightGBM) was constructed based on the combined modal decomposition. Specifically, this paper uses a dataset that includes ambient temperature, irradiance, inverter temperature, module temperature, etc. Firstly, the feature variables with high correlation effects on PV power were selected by Pearson correlation analysis. Furthermore, the PV power is decomposed into a new feature matrix by (EMD), (EEMD) and (CEEMDAN), i.e., the combination decomposition (CD), which deeply explores the intrinsic connection of PV power historical series information and reduces the non-smoothness of PV power. Finally, preliminary PV power prediction values and error correction vector are obtained by NARX prediction. Both are embedded into the NARX-LSTM-LightGBM model pair for PV power prediction, and then the error inverse method is used for weighted optimization to improve the accuracy of the PV power prediction. The experiments were conducted with the measured data from Andre Agassi College, USA, and the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the model under different weather conditions were lower than 1.665 kw, 0.892 kw and 0.211, respectively, which are better than the prediction results of other models and proved the effectiveness of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.