Abstract

Abstract A multiscale analysis of the significant nocturnal tornado outbreak in Tennessee on 2–3 March 2020 is presented. This outbreak included several significant tornadoes and resulted in the second most fatalities (25) and most injuries (309) of all nocturnal tornado events in Tennessee in 1950–2020. The two deadliest tornadoes struck Nashville (EF3 intensity) and Cookeville (EF4) resulting in 5 and 19 fatalities, respectively. The supercell responsible for the tornado outbreak initiated at 0330 UTC 3 March within a region of warm frontogenesis in western Tennessee. Throughout its life cycle, the supercell was located in a region of convective available potential energy near 1000 J kg−1 and 0–1-km storm-relative helicity over 350 m2 s−2. Retrospective 3-h forecasts from the experimental Warn-on-Forecast System (WoFS) convection-allowing ensemble initialized after the parent supercell initiated indicated a high probability, high severity scenario for tornadoes across Tennessee and into Nashville through 0700 UTC. Earlier WoFS forecasts indicated a low probability, high severity scenario owing to uncertainty in the initiation of supercells. The presence of these supercells was sensitive to the upstream thermodynamic conditions and warm frontogenesis regions that were inherited from the lateral boundary conditions. In all, this study highlights the potential of the WoFS ensemble to contribute useful probabilistic severe weather information to the short-term forecast process during a nocturnal significant tornado outbreak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call