Abstract
As a preliminary to development and evaluation of labeled mecamylamine as a potential in vivo imaging ligand for human central nicotinic receptors (nAchRs), this work was intended to determine whether the pharmacokinetic properties of mecamylamine are suitable for experimental studies using 11C-radiolabeled mecamylamine preliminary to positron emission tomography (PET) in humans. An original gas chromatographic method for rapid and simple determination of mecamylamine in biological samples was developed and validated (within run precision, 3.8–5.2%; between assay variation, 5.3–6.9%; assay accuracy, 5.6–11.8%). The results of the pharmacokinetic investigation in the rat demonstrated a very fast clearance of mecamylamine from blood [half-life, 1.2h; clearance (CL), 1.2L/kg/h) concomitant with an uptake that was higher in kidney, intermediate in lung, and lower in heart, liver, and brain. Brain tissue kinetics of mecamylamine showed a similar pattern for all the regions, with a rapid increase followed by a plateau after 15min. This plateau differed according to the region of the brain; it was higher in colliculi, hippocampus, and cortex (area of high density of nAchRs) than in cerebellum or white matter (area with a limited population of nAchRs). No other lipophilic metabolites that were able to disturb the specific binding to nAchRs were identified during the investigation. Thus, mecamylamine shows peculiar qualities making it a good candidate for carbon-11 labeling for experimental studies in view of final PET imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.