Abstract

Background: In order to assess the impact of the different groups of agricultural pesticides used in Côte d'Ivoire on the increase of mosquitoes resistance to insecticides, the expression profiles of 7 P450 cytochromes and one GSTE2 of Anopheles gambiae involved in mosquito resistance to insecticides were studied. The goal of this study was to determine the effect of short exposure of mosquito larvae to different groups of agricultural pesticides on mosquito resistance. Methods: Three groups of pesticides were selected: (i) agricultural insecticide solutions, (ii) non-insecticide pesticide solutions (a mixture of herbicides and fungicides), and (iii) a mixture of the first two. A fourth non-pesticide solution was used as a control. Four groups of each stage 2 larvae (strain Kisumu, male and female) were exposed to 20% concentrated solution for 24 hours. Susceptibility tests for dichlorodiphenyltrichloroethane (DDT) and Deltamethrin were carried out on adults aged 2-5 days. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to quantify the expression of eight metabolic genes involved in mosquito resistance to insecticides. Results: Susceptibility to DDT showed a similar increase in the time required to knock down 50% of mosquitoes (kdt50) in l colonies exposed to insecticides and non-insecticides compared to the control colony. As for deltamethrin, kdt50 was higher in the colonies exposed to insecticides and the pesticide mixture compared to the colony exposed to non-insecticides. Of all the genes studied in all colonies, except for CYP6P1 induced only in the colony consisting of the pesticide mixture, no genes were induced. Conclusions: This study confirmed that induction is influenced by the duration, the concentration of the solution and the type of xenobiotic used as an inducer. The overexpression of CYP6P1 confirmed the inductive effect that a short exposure of mosquito larvae to agricultural pesticides could have.

Highlights

  • In order to assess the impact of the different groups of agricultural pesticides used in Côte d'Ivoire on the increase of mosquitoes resistance to insecticides, the expression profiles of 7 P450 cytochromes and one GSTE2 of Anopheles gambiae involved in mosquito resistance to insecticides were studied

  • Choice of agricultural pesticides and mosquito induction The parental strain of mosquito used in this study was Anopheles gambiae originating from Kisumu, which is susceptible to insecticides used in public health

  • The aim of this study was to assess the expression of selected cytochromes involved in insecticide resistance in susceptible mosquito larvae when they are exposed to different groups of agricultural pesticides used in Côte d’Ivoire at larval stage

Read more

Summary

Introduction

In order to assess the impact of the different groups of agricultural pesticides used in Côte d'Ivoire on the increase of mosquitoes resistance to insecticides, the expression profiles of 7 P450 cytochromes and one GSTE2 of Anopheles gambiae involved in mosquito resistance to insecticides were studied. The goal of this study was to determine the effect of short exposure of mosquito larvae to different groups of agricultural pesticides on mosquito resistance. A fourth non-pesticide solution was used as a control. Results: Susceptibility to DDT showed a similar increase in the time required to knock down 50% of mosquitoes (kdt50) in l colonies exposed to insecticides and non-insecticides compared to the control colony. As for deltamethrin, kdt was higher in the colonies exposed to insecticides and the pesticide mixture compared to the colony version 2 (revision)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call