Abstract

BackgroundThe effectiveness of insecticide treated nets is under threat across Africa south of the Sahara from the selection of pyrethroid resistance in Anopheles gambiae mosquitoes. To maintain progress against malaria it is necessary to identify alternative residual insecticides for mosquito nets. Mixtures of pyrethroid and insecticides with novel mode of action provide scope for both improved control and management of resistance through concurrent exposure to unrelated insecticides.MethodsThe pyrrole chlorfenapyr and the pyrethroid alphacypermethrin were tested individually and as a mixture on mosquito nets in an experimental hut trial in southern Benin against pyrethroid resistant An gambiae and Culex quinquefasciatus mosquitoes. The nets were deliberately holed to simulate the effect of wear and tear.ResultsThe nets treated with the mixture of chlorfenapyr 200 mg/m2 and alphacypermethrin 25 mg/m2 killed a proportion of An gambiae (77%, 95%CI: 66–86%) significantly greater than nets treated with alphacypermethrin 25 mg/m2 (30%, 95%CI: 21–41%) but not significantly different from nets treated with chlorfenapyr 200 mg/m2 (69%, 95%CI: 57–78%). The nets treated with the mixtures procured personal protection against An gambiae biting(58–62%) by a greater margin than the alphacypermethrin treated net (39%), whereas the chlorfenapyr treated net was not protective. A similar trend in mortality and blood feeding inhibition between treatments was observed in Cx quinquefasciatus to that seen in An. gambiae, although the effects were lower. A mixture of alphacypermethrin with chlorfenapyr applied at 100 mg/m2 had an effect similar to the mixture with chlorfenapyr at 200 mg/m2.ConclusionThe effectiveness of ITNs against pyrethroid resistant mosquitoes was restored by the mixture: the alphacypermethrin component reduced human-vector contact while the chlorfenapyr controlled pyrethroid-resistant mosquitoes. The complementary action of these unrelated insecticides demonstrates that the combination on nets has potential for preventing malaria transmission in areas compromised by the spread of pyrethroid resistance.

Highlights

  • Long lasting insecticidal nets (LLINs) are considered best practice for malaria vector control because they are effective, reliable, robust and relatively simple to deliver even in remote regions [1]

  • Experimental Hut Trial Over the six week trial, 515 Anopheles gambiae s.l., 3764 Culex quinquefasciatus and 453 Mansonia females were caught in the huts

  • In huts where nets were treated with alphacypermethrin or alphacypermethrin-chlorfenapyr mixtures the proportions of An. gambiae and Cx. quinquefasciatus that exited into verandahs were significantly greater than huts where nets were untreated or treated with chlorfenapyr (p,0.0001) (Table 1&2)

Read more

Summary

Introduction

Long lasting insecticidal nets (LLINs) are considered best practice for malaria vector control because they are effective, reliable, robust and relatively simple to deliver even in remote regions [1]. The recent reductions in malaria-associated morbidity and mortality across sub Saharan Africa is largely attributed to the massive roll out of LLINs during the last decade [1,2]. Owing to their low cost, longer residual activity and safety, the pyrethroids remain the ideal insecticides for treating LLINs [1,3]. Resistance to pyrethroids is spreading fast across Africa south of the Sahara and has been reported in malaria vectors in 27 countries [4]. The effectiveness of insecticide treated nets is under threat across Africa south of the Sahara from the selection of pyrethroid resistance in Anopheles gambiae mosquitoes. Mixtures of pyrethroid and insecticides with novel mode of action provide scope for both improved control and management of resistance through concurrent exposure to unrelated insecticides

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call