Abstract

Short-term load forecasting has evolved into an important aspect of power system in safe operation and rational dispatching. However, given the load series' instability and volatility, this is a challenging task. To this end, this study proposes a dynamic decomposition-reconstruction-ensemble approach by cleverly and dynamically combining two proven and effective techniques (i.e., the reconstruction techniques and the secondary decomposition techniques). In fact, by introducing the decomposition-reconstruction process based on the dynamic classification, filtering, and giving the criteria for determining the components that need to be decomposed again, our proposed model improves the decomposition-ensemble forecasting framework. Our proposed model makes full use of decomposition techniques, complexity analysis, reconstruction techniques, secondary decomposition techniques, and a neural network optimized by an automatic hyperparameter optimization algorithm. Besides, we compared our proposed model with state-of-the-art models including five models with reconstruction techniques and two models with secondary decomposition techniques. The experiment results demonstrate the superiority of our proposed dynamic decomposition-reconstruction technique in terms of forecasting accuracy, precise direction, equality, stability, correlation, comprehensive accuracy, and statistical tests. To conclude, our proposed model has the potential to be a useful tool for short-term load forecasting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call