Abstract

The anabolic effect of intermittent PTH on bone is variable depending on the species studied, duration/mode of administration, and location of skeletal response investigated. We tested the hypothesis low dose, short term, intermittent PTH 1-34 administration is sufficient to enhance bone formation without altering bone resorption. To test our hypothesis, mice were treated intermittently with one of three concentrations of PTH 1-34 (1 microg/kg; low, 10 microg/kg, or 20 microg/kg; high) for three weeks. The skeletal response was identified by quantifying: serum markers of bone turnover, cancellous bone parameters in distal femur, proximal tibia, and lumbar vertebrae by microCT, and number of osteoblasts and osteoclasts in distal femur. Mice receiving 20 microg/kg of PTH 1-34 demonstrated a 30% increase in serum osteocalcin, but no differences in serum calcium, type I collagen teleopeptides, or TRACP 5b. For all bones, microCT analysis suggested mice receiving 20 microg/kg of PTH 1-34 had increased cancellous bone mineral density, trabecular thickness and spacing, but decreased trabecular number. A 60% increase in the number of alkaline phosphatase positive osteoblasts in the distal femur was also observed in tissue sections; however, the number of TRAP positive osteoclasts was not different between test and control groups. While animals administered 10 microg/kg demonstrated similar trends for all bone turnover indices, such alterations were not observed in animals administered PTH 1-34 at 1 microg/kg per day. Thus, PTH 1-34, administered intermittently for three weeks at 20 microg/kg is sufficient to enhance bone formation without enhancing resorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.