Abstract

Cranberry (Vaccinium macrocarpon Ait.) is an ammophilous plant grown on acid soils (pH 4.0 - 5.5). Elemental sulfur is commonly applied at a recommended rate of 1120 kg S ha−1 per pH unit to acidify cranberry soils, potentially impacting the plant mineral nutrition. The general recommendation may not fit all conditions encountered in the field. Our objective was to develop an equation to predict the sulfur requirement to reach pHwater of 4.2 to tackle nitrification in acidic cranberry soils varying in initial pH values, and to measure the effect of elemental sulfur on the mineral nutrition and the performance of cranberry crops. A 3-yr experiment was designed to test the effect of elemental sulfur on soil and tissue tests and on berry yield and quality. Four S treatments (0, 250, 500 and 1000 kg S ha−1) were established on three duplicated sites during two consecutive years. We ran soil, foliar tissue, berry tissue tests, and measured berry yield, size, anthocyanin content (TAcy), Brix, and firmness. Nutrients were expressed as centered log ratios to reflect nutrient interactions. Results were analyzed using a mixed model. Soil Ca decreased while soil Mn and S increased significantly (p ≤ 0.05). Sulfur showed no significant effects on nutrient balances in uprights. The S impacted negatively berry B balance, and positively berry Mn and S balances. A linear regression model relating pH change to S dosage and elapsed time (R2 = 0.53) showed that to reach pHwater of 4.2 two years after S application, 250 - 1000 kg S ha−1 could be applied depending on initial soil pH value. The stratification of surface-applied elemental S in the soil profile should be further examined in relation to plant rooting and nutrient leaching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call