Abstract

The increasing sulphur (S) deficiency in soils of several parts of world has led to the use of fertilizer S, an important factor in enhancing the production and quality of crops. Very limited information is available on the use of elemental sulphur (S0) as a fertilizer, its oxidation into SO42- and transformation into organic S in semiarid subtropical soils. We studied the impact of three temperature regimes on the mineralization of soil organic S, and the oxidation and immobilization of S0 in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) subtropical soils of north-western India. Repacked soil cores were incubated under aerobic conditions (60% water-filled pore space) for 0, 14, 28 and 42 d with and without incorporated S0 (500 μg g-1 soil). Temperature had profound effects on all three soils processes, the rates of mineralization of native soil organic S, oxidation of applied S0 and transformation of S0 into soil organic S being greatest at 36 °C, irrespective of soil pH. Mineralization of native soil organic S (without added S0) resulted in the accumulation of 39, 66 and 47 μg SO42-–S g-1 soil in acidic, neutral and alkaline soil in 42 d period at 36 °C. Of the total mineralization, the majority (62 – 74%) occurred during the first 14 d period. Oxidation rate of added S0 during initial 14 d period at 36 °C was highest in alkaline soil (292 μg S cm-2 d-1), followed by neutral soil ((180 μg S cm-2 d-1) and lowest in acidic soil (125 μg S cm-2 d-1). Of the applied 500 μg S0 g-1 soil, 3.2 – 10.0%, 6.8 – 15.4% and 10.0 – 23.0% oxidized to SO42-, and 13.4 – 28.6%, 16.0 – 29.0% and 14.6 – 29.0% were transformed into organic S in 42 d period in acidic, neutral and alkaline soil, respectively. The results of our study suggest that in order to synchronize the availability of S with plant need, elemental S may be applied well before the seeding of crops, especially in acidic soil and in regions where temperature remains low. Substantial mineralization of native soil organic S in the absence of applied S0 and immobilization of applied S0 into organic S suggest that the role of soil biomass as source and sink could be exploited in long term S management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.