Abstract
The effects of a short-term ethanol treatment on hippocampus have been studied in mice exhibiting intoxication signs. The alterations of neurons and astrocytes as well as quantitative changes of calbindin D28k-immunoreactivity and glial fibrillary acidic protein-immunoreactivity (GFAP-IR) in selected regions of the dorsal hippocampus were examined using anti-calbindin and anti-GFAP monoclonal anti-body (mAb), respectively. The administration of 6% (v/v) ethanol during first week led to the neuronal death and decrease of the total number of calbindin-IR neurons in the examined brain regions. Moreover, the calbindin positive neurons were shown to have diminished processes following short-term ethanol exposure. These neuronal changes were associated with the increase of the GFAP-IR astrocytes. Hypertrophy of cell bodies and cytoplasmic processes of reactive astrocytes were also seen. In addition, dense, thick and highly-stained GFAP-IR cells with long processes in granular cell layer appeared entering into molecular layer of dentate gyrus. In agreement with the discrepancy percentage of neuronal cell loss and increase of reactive astrocytes detected by calbindin and GFAP-IR using image quantitative analysis, the regional differences in the vulnerability to the neurotoxic effects following short-term ethanol exposure were found: CA3>CA2>CA1>DG. These findings also illustrate the importance of correlation between calbindin and GFAP-IR when determining the morphological alteration of neuron and astroglial following short-term ethanol treatment. The disruption of calbindin and GFAP could affect neuronal-astroglial interaction, resulting in disturbance of behaviors dependent on hippocampus.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have