Abstract
Dorsal root ganglion (DRG) neurons that mediate nociception express the high affinity NGF receptor (trkA) gene and the preprotachykinin (PPT) gene. NGF has been shown to regulate both of these DRG neuronal genes. Our laboratory has shown that these genes are also regulated by estrogen. Long-term daily estrogen replacement, in adult ovariectomized (OVX) rats, causes a coordinate decline in trkA and β-PPT mRNA levels in lumbar DRG neurons, while short-term estrogen replacement increases trkA mRNA levels in uninjured as well as in axotomized lumbar DRG neurons. The purpose of the current study was to test the hypothesis that short-term estrogen replacement increases DRG β-PPT mRNA levels in lumbar DRG neurons of OVX rats and that the increase is dependent on target-derived NGF. Sciatic nerve transection (SNT) was used to eliminate target-derived NGF in L4 and L5 DRGs in adult OVX rats. Seven days later, one-half of the SNT and one-half of the animals that had received sham sciatic nerve transactions (SHAM) received two daily injections of estradiol benzoate (EB). The remaining rats received two daily injections of vehicle alone. Quantitative in situ hybridization analyses of sections from L4 and L5 DRGs showed that two daily injections of EB significantly increased β-PPT mRNA levels in DRGs of SHAM animals, but had no effect on β-PPT mRNA levels in DRGs from SNT animals. These data coupled with our earlier observations of the effect of short-term estrogen replacement on DRG trkA mRNA levels, indicate that the regulation of DRG β-PPT mRNA levels by estrogen requires target-derived NGF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have