Abstract
Although, Back Propagation Neural Network are frequently implemented to forecast short-term electricity load, however, this training algorithm is criticized for its slow and improper convergence and poor generalization. There is a great need to explore the techniques that can overcome the above mentioned limitations to improve the forecast accuracy. In this paper, an improved BP neural network training algorithm is proposed that hybridizes simulated annealing and genetic algorithm (SA-GA). This hybrid approach leads to the integration of powerful local search capability of simulated annealing and near accurate global search performance of genetic algorithm. The proposed technique has shown better results in terms of load forecast accuracy and faster convergence. ISO New England data for the period of five years is employed to develop a case study that validates the efficacy of the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.