Abstract
Abstract Resonance energy transfer by the Forster–Dexter mechanism in a rigid homogeneous medium is modeled using a hard-sphere fluid (HSF) radial distribution function. This distribution is more realistic than the commonly used uniform distribution with excluded volume (UDEV) function. For the dipole–dipole mechanism, both models yield essentially the same donor luminescence decay, except for small critical radii. For the exchange mechanism, however, the two models differ significantly. The HSF model displays a stronger “two-exponential” behavior. Also, to fit a given experimental decay, the UDEV model requires both a larger effective Bohr radius and a larger rate constant at collisional distance than the HSF model.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have