Abstract

To make a prediction for seismic signal propagation, one needs to specify physical properties and subsurface ground structure of the site. This information is frequently unknown or estimated with significant uncertainty. This paper describes a methodology for probabilistic seismic ensemble prediction for vertically stratified soils and short ranges with no in situ site characterization. Instead of specifying viscoelastic site properties, the methodology operates with probability distribution functions of these properties taking into account analytical and empirical relationships among viscoelastic variables. This yields ensemble realizations of signal arrivals at specified locations where statistical properties of the signals can be estimated. Such ensemble predictions can be useful for preliminary site characterization, for military applications, and risk analysis for remote or inaccessible locations for which no data can be acquired. Comparison with experiments revealed that measured signals are not always within the predicted ranges of variability. Variance-based global sensitivity analysis has shown that the most significant parameters for signal amplitude predictions in the developed stochastic model are the uncertainty in the shear quality factor and the Poisson ratio above the water table depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.