Abstract
Frank and Wolfe’s celebrated conditional gradient method is a well-known tool for solving smooth optimization problems for which minimizing a linear function over the feasible set is computationally cheap. However, when the objective function is nonsmooth, the method may fail to compute a stationary point. In this work, we show that the Frank–Wolfe algorithm can be employed to compute Clarke-stationary points for nonconvex and nonsmooth optimization problems consisting of minimizing upper-C 1,α functions over convex and compact sets. Furthermore, under more restrictive assumptions, we propose a new algorithm variant with stronger stationarity guarantees, namely directional stationarity and even local optimality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.