Abstract
The paper deals with stochastic difference-of-convex-functions (DC) programs, that is, optimization problems whose cost function is a sum of a lower semicontinuous DC function and the expectation of a stochastic DC function with respect to a probability distribution. This class of nonsmooth and nonconvex stochastic optimization problems plays a central role in many practical applications. Although there are many contributions in the context of convex and/or smooth stochastic optimization, algorithms dealing with nonconvex and nonsmooth programs remain rare. In deterministic optimization literature, the DC algorithm (DCA) is recognized to be one of the few algorithms able to effectively solve nonconvex and nonsmooth optimization problems. The main purpose of this paper is to present some new stochastic DCAs for solving stochastic DC programs. The convergence analysis of the proposed algorithms is carefully studied, and numerical experiments are conducted to justify the algorithms' behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.