Abstract

This paper describes the need for technologies that improve analytical sensitivity to proteins to better define and monitor the progression from heath to disease over the course of an individual's life. These technologies have the potential to allow the early diagnosis of disease, and trigger treatments at the time when they have the greatest opportunity to be effective. We will describe a technology that we have developed for high sensitivity protein detection, namely, single molecule arrays (Simoa). Simoa is based on the capture of protein molecules on magnetic beads, labeling each protein with an enzyme, and counting of single enzyme labels on beads that are isolated in arrays of femtoliter wells. Simoa has enabled the detection of proteins at subfemtomolar concentrations in a variety of biological fluids. We describe the impact of higher sensitivity of proteins using Simoa on: less invasive testing; earlier detection of disease; providing biomarker baseline profiles for healthy individuals; testing of small sample volumes; monitoring of therapeutic efficacy; faster tests; and detection of proteins in complex samples. We also provide a perspective of how new technologies that allow the low-cost manufacture and miniaturization of Simoa could drive the next wave of analytical devices, including wearables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call