Abstract

Uncovering novel drug-drug interactions (DDIs) plays a pivotal role in advancing drug development and improving clinical treatment. The outstanding effectiveness of graph neural networks (GNNs) has garnered significant interest in the field of DDI prediction. Consequently, there has been a notable surge in the development of network-based computational approaches for predicting DDIs. However, current approaches face limitations in capturing the spatial relationships between neighboring nodes and their higher-level features during the aggregation of neighbor representations. To address this issue, this study introduces a novel model, KGCNN, designed to comprehensively tackle DDI prediction tasks by considering spatial relationships between molecules within the biomedical knowledge graph (BKG). KGCNN is built upon a message-passing GNN framework, consisting of propagation and aggregation. In the context of the BKG, KGCNN governs the propagation of information based on semantic relationships, which determine the flow and exchange of information between different molecules. In contrast to traditional linear aggregators, KGCNN introduces a spatial-aware capsule aggregator, which effectively captures the spatial relationships among neighboring molecules and their higher-level features within the graph structure. The ultimate goal is to leverage these learned drug representations to predict potential DDIs. To evaluate the effectiveness of KGCNN, it undergoes testing on two datasets. Extensive experimental results demonstrate its superiority in DDI predictions and quantified performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.