Abstract

The delayed Duffing equation, x^{″}+ɛx^{'}+x+x^{3}+cx(t-τ)=0, admits a Hopf bifurcation which becomes singular in the limit ɛ→0 and τ=O(ɛ)→0. To resolve this singularity, we develop an asymptotic theory where x(t-τ) is Taylor expanded in powers of τ. We derive a minimal system of ordinary differential equationsthat captures the Hopf bifurcation branch of the original delay differential equation. An unexpected result of our analysis is the necessity of expanding x(t-τ) up to third order rather than first order. Our work is motivated by laser stability problems exhibiting the same bifurcation problem as the delayed Duffing oscillator [Kovalev etal., Phys. Rev. E 103, 042206 (2021)2470-004510.1103/PhysRevE.103.042206]. Here we substantiate our theory based on the short delay limit by showing the overlap (matching) between our solution and two different asymptotic solutions derived for arbitrary fixed delays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call