Abstract

Abstract We report on bifurcation studies for the incompressible magnetohydrodynamic equations in three space dimensions with periodic boundary conditions and a temporally constant external forcing. Fourier representations of velocity, pressure and magnetic field have been used to transform the original partial differential equations into a system of ordinary differential equations (ODE), to which then special numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. In a part of the calculations, in order to reduce the number of modes to be retained, the concept of approximate inertial manifolds has been applied. For varying (increasing from zero) strength of the imposed forcing, or varying Reynolds number, respectively, time-asymptotic states, notably stable stationary solutions, have been traced. A primary non-magnetic steady state loses, in a Hopf bifurcation, stability to a periodic state with a non-vanishing magnetic field, showing the appearance of a generic dynamo effect. From now on the magnetic field is present for all values of the forcing. The Hopf bifurcation is followed by further, symmetry-breaking, bifurcations, leading finally to chaos. We pay particular attention to kinetic and magnetic helicities. The dynamo effect is only observed if the forcing is chosen such that a mean kinetic helicity is generated; otherwise the magnetic field diffuses away, and the time-asymptotic states are non-magnetic, in accordance with traditional kinematic dynamo theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.