Abstract
An important aspect of any wind power plant integration analysis is the short-circuit contribution. Reliable results can only be obtained by considering every aspect of the wind turbine behaviour that can impact its short-circuit current injection. This information is required to accurately represent the wind plant in power system models used by the system operators, to properly size circuit breakers and for protection coordination within the wind power. This task is often challenging not only due to the inherent differences between the synchronous generating units and wind turbine generators (WTGs) but also due to the variability of the WTG types and settings. This paper presents results of detailed short circuit analysis performed on hundreds of types and configuration variants of Vestas WTGs with full-scale converters. The WTG current contribution during the 1st, 3rd and 5th cycles for faults varying between 0.9pu and 0.01pu residual voltage were obtained using detailed WTG models. Various statistical techniques were used to assess the variability in the short circuit contributions and generalise the most appropriate values for the minimum and maximum transient contributions for a given WTG type and configuration. Finally, the paper dwells on the techniques used to obtain the equivalent positive and negative sequence impedances for the WTG for various fault conditions and turbine configuration and provides recommendations on the appropriate use of these impedances for wind power plant integration analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have