Abstract

Abstract We introduce adaptive confidence intervals on a parameter of interest in the presence of nuisance parameters, such as coefficients on control variables, with known signs. Our confidence intervals are trivial to compute and can provide significant length reductions relative to standard ones when the nuisance parameters are small. At the same time, they entail minimal length increases at any parameter values. We apply our confidence intervals to the linear regression model, prove their uniform validity and illustrate their length properties in an empirical application to a factorial design field experiment and a Monte Carlo study calibrated to the empirical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.