Abstract

When searching for new phenomena in high-energy physics, statistical analysis is complicated by the presence of nuisance parameters, representing uncertainty in the physics of interactions or in detector properties. Another complication, even with no nuisance parameters, is that the probability distributions of the models are specified only by simulation programs, with no way of evaluating their probability density functions. I advocate expressing the result of an experiment by means of the likelihood function, rather than by frequentist confidence intervals or p-values. A likelihood function for this problem is difficult to obtain, however, for both of the reasons given above. I discuss ways of circumventing these problems by reducing dimensionality using a classifier and employing simulations with multiple values for the nuisance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.