Abstract

To date, no suitable theoretical basis has been derived to predict with reliable accuracy the shoreward sand transport under waves in the deeper water outside the surf zone. This is important for understanding the rate of recovery of beaches after major storm erosion and, in some circumstances, to quantify net shoreward supply of sand to the shoreline from the active lower shore-face below the depth of storm erosion bar development. Even a relatively low rate of long term shoreward net supply may contribute to shoreline stability where it offsets a gradient in the longshore sand transport that would otherwise lead to recession. This paper outlines the results of analysis of a 41 year dataset of beach and nearshore profile surveys to quantify annual average rates of shoreward net sand transport in 6-20m water in an area where the profiles are not in equilibrium due to the existence of a residual river mouth ebb delta bar lobe. Additionally, an empirical adaptation of the sheet flow relationship of Ribberink and Al-Salem (1990) to provide for the effects of ripples has been derived from large wave flume data and correlates well with the measured Gold Coast transport rates. These have been applied to a new coastline modelling system developed as part of research into the long term evolution of Australia’s central east coast region in response to sea level change and longshore sand transport processes, which combines the one-line concept of shoreline profile translation within the zone of littoral sand transport with cross-shore profile evolution across the deeper shore-face profile below that zone. It demonstrates the importance of providing for both the shoreward supply from the continental shelf and the varying profile response time-scale across the shore-face in predicting shoreline evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.