Abstract

Submerged breakwaters (SBWs) are becoming a popular option for coastal protection, mainly due to their low aesthetic impact on the natural environment. However, SBWs have rarely been employed for coastal protection in the past and therefore, their efficacy remains largely unknown. The main objective of the present study was to investigate the structural and environmental conditions that govern the mode of shoreline response (i.e shoreline erosion vs shoreline accretion) to SBWs. The relative importance of the key structural and environmental parameters governing the response mode to a single shore parallel SBW is investigated through a combination of theoretical analysis and numerical modelling. Using physical considerations, a theoretical response-function model is derived under several simplifying assumptions including parallel depth contours, linear wave theory, shore normal waves, and no wave–current interaction. Numerical modelling is undertaken with the Mike21 model suite to simulate the depth averaged velocity fields (without morphological updating) due to waves acting on a single shore-parallel SBW located on a schematised beach with parallel depth contours. In total 92 coupled wave–current simulations were undertaken. The results indicate that the mode of shoreline response to the SBW can be expressed in terms of the two non-dimensional parameters h B / H 0 and ( s B / h B ) 3/2( L B / h B ) 2( A 3/ h B ) 1/2 (variables defined in the text).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call