Abstract

In this paper, the hydrodynamic performance of a bottom-seated type oscillating water column (OWC) device is investigated by numerical and experimental methods. A coupled SPH (smoothed particle hydrodynamics) - FDM (Finite Difference Method) is proposed to simulate the interaction between waves and the OWC device. The current SPH-FDM model improves grid encryption method, and expand the single-phase SPH-FDM to multiphase SPH-FDM. The results from SPH-FDM align closely with those from the published experimental measurements. Following the successful validations, SPH-FDM and experiment are employed for a series of simulations to investigate the performance of the OWC device. Compared to experimental method, SPH-FDM can obtain global flow field information and avoid the influence of free surface identification and capillarity on vortex determination. In addition, SPH-FDM can naturally captures free surfaces, so it supports further studies on the non-uniformity of water surface in the chamber of OWC which cannot be studied by PIV or pneumatic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call