Abstract
Polymeric rubber and organic semiconductor H2Pc-CNT-composite-based surface- and sandwich-type shockproof deformable infrared radiation (IR) sensors were fabricated using a rubbing-in technique. CNT and CNT-H2Pc (30:70 wt.%) composite layers were deposited on a polymeric rubber substrate as electrodes and active layers, respectively. Under the effect of IR irradiation (0 to 3700 W/m2), the resistance and the impedance of the surface-type sensors decreased up to 1.49 and 1.36 times, respectively. In the same conditions, the resistance and the impedance of the sandwich-type sensors decreased up to 1.46 and 1.35 times, respectively. The temperature coefficients of resistance (TCR) of the surface- and sandwich-type sensors are 1.2 and 1.1, respectively. The novel ratio of the H2Pc-CNT composite ingredients and comparably high value of the TCR make the devices attractive for bolometric applications meant to measure the intensity of infrared radiation. Moreover, given their easy fabrication and low-cost materials, the fabricated devices have great potential for commercialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.