Abstract
The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.