Abstract

The evolution of a shock wave and its reflection from a wall in a gas-liquid medium with dissolution and hydration are experimentally investigated. Dissolution and hydration behind the front of a moderate-amplitude shock wave are demonstrated to be caused by fragmentation of gas bubbles, resulting in a drastic increase in the area of the interphase surface and in a decrease in size of gas inclusions. The mechanisms of hydration behind the wave front are examined. Hydration behind the front of a shock wave with a stepwise profile is theoretically analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.